Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions

TitleWeaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions
Publication TypeJournal Article
Year of Publication2014
AuthorsTang, Jinyun, and William J. Riley
JournalNature Climate Change
Pagination56 - 60
Date PublishedMay-11-2015

The large uncertainty in soil carbon–climate feedback predictions has been attributed to the incorrect parameterization of decomposition temperature sensitivity (Q10; ref. 1) and microbial carbon use efficiency2. Empirical experiments have found that these parameters vary spatiotemporally3, 4, 5, 6, but such variability is not included in current ecosystem models7, 8, 9, 10, 11, 12, 13. Here we use a thermodynamically based decomposition model to test the hypothesis that this observed variability arises from interactions between temperature, microbial biogeochemistry, and mineral surface sorptive reactions. We show that because mineral surfaces interact with substrates, enzymes and microbes, both Q10 and microbial carbon use efficiency are hysteretic (so that neither can be represented by a single static function) and the conventional labile and recalcitrant substrate characterization with static temperature sensitivity is flawed. In a 4-K temperature perturbation experiment, our fully dynamic model predicted more variable but weaker soil carbon–climate feedbacks than did the static Q10 and static carbon use efficiency model when forced with yearly, daily and hourly variable temperatures. These results imply that current Earth system models probably overestimate the response of soil carbon stocks to global warming. Future ecosystem models should therefore consider the dynamic interactions between sorptive mineral surfaces, substrates and microbial processes.